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Lecture 3 



OLS assumptions - 1 

• Model of population     𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 

• Sample estimation (best-fit line)    𝑦 = 𝑏0 + 𝑏1𝑥 

• We want       𝑬 𝒃𝟏 = 𝜷𝟏---> (1) 

• Meaning we want 𝑏1to be “unbiased”  

 

• 5 assumptions of OLS to ensure “unbiasedness” of our slope 

parameter. 

  



OLS assumptions - 2 

1- Linear in parameters: in OLS,  

• we can not have   𝑦 = 𝛽0 + 𝛽1
2𝑥 + 𝜀 (not linear) 

• we could have   𝑦 = 𝛽0 + 𝛽1𝑥
2 + 𝜀 (linear-in-parameters) 

2- Random sampling 

3- Zero conditional mean 

𝐸(𝜀/𝑥)  =  0 ---> (2) 

• Error is random with an expected average value of 0 given the IV (𝑥). 



OLS assumptions - 3 

3- Zero conditional mean (cont.)   

• Before we state how 𝜀 and 𝑥 are related, we can make one 

assumption about 𝜀 – As long as intercept 𝛽0 is included in the 

equation, nothing is lost by assuming that the average value of 𝜀 in 

the population is zero. 

• i.e.  𝐸(𝜀)  =  0 ---> (3) 
• (remember from SLR lec.1 errors above and below the best-fit line averaged 0). 

 

• Eq. (3) suggests that the distribution of unobserved factors in the 

population is zero. 

• Combining equations 2, and 3, we get that: 

𝐸(𝜀/𝑥) = 𝐸(𝜀)  =  0 ---> (4) 

 



OLS assumptions - 4 

3- Zero conditional mean (cont.)   

• 𝐸(𝜀/𝑥) = 𝐸(𝜀)  =  0 ---> (4) 

• Equation (4) suggests that average value of 𝜀 does not depend on the 

value of 𝑥. 

• If equation (4) holds true, then we can say that 𝜀 is “mean 

independent” of 𝑥 

• When equations (3) and (4) are met, we can state the zero conditional 

mean assumption is met.  



OLS assumptions - 5 

• 3- Zero conditional mean (cont.)  

𝐸(𝜀/𝑥) = 𝐸(𝜀)  =  0 ---> (4) 

• The error is random with an expected average value of 0 given the IV 

• Example (1): predict wage based on individual’s height. 

• So, for a certain height ℎ𝑖 = 70 𝑖𝑛𝑐ℎ𝑒𝑠 , we will have different 

predicted values of wages (individuals with different wages but same 

height).. 

• Individuals 1,2,3 ---> wages = 40k, 42k, 38k.  

• Why do we have these differences in wages? Because of other 

factors that are not known to the analyst, but combined in the 𝜀 term 

(factors such as: more/less talented, productive, etc.).  .  



OLS assumptions - 6 

3- Zero conditional mean (cont.)   

𝐸(𝜀/𝑥) = 𝐸(𝜀)  =  0 ---> (4) 

• Example (2): In an effort to determine income as a function of 

education, we can state that 𝐼𝑛𝑐𝑜𝑚𝑒 =  𝛽0  + 𝛽1(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛)  + 𝜀 

• Let us say 𝜀 is same as innate ability  

• Let 𝐸(𝑎𝑏𝑖𝑙𝑖𝑡𝑦/8) represents average ability for the group of the 

population with 8 years of education. 

• Similarly, let 𝐸(𝑎𝑏𝑖𝑙𝑖𝑡𝑦/16) represents average ability for the group of 

the population with 16 years of education. 

• As per equation (4): 𝐸(𝑎𝑏𝑖𝑙𝑖𝑡𝑦/8)  =  𝐸(𝑎𝑏𝑖𝑙𝑖𝑡𝑦/16)  = 0  



OLS assumptions - 7 

3- Zero conditional mean (cont.)   

𝐸(𝜀/𝑥) = 𝐸(𝜀)  =  0 ---> (4) 

• As per equation (4): 𝐸(𝑎𝑏𝑖𝑙𝑖𝑡𝑦/8)  =  𝐸(𝑎𝑏𝑖𝑙𝑖𝑡𝑦/16)  = 0  

• As we can not observe innate ability, we have no way of knowing 

whether or not average ability is same for all education levels. • So for 

all unobserved factors we consider that 𝐸(𝜀/𝑥)  =  0 



OLS assumptions - 8 

4- Sample variation   

• We need to have different 𝑦’𝑠 and different 𝑥’𝑠. 

• We can not just have 1 observation and say multiply it by 100 and 

claim 100 observation – observations need to be unique and have 

variations in both 𝑦 and 𝑥. 

5- Homoscedasticity: homo=same, scedasticity=variance 

• 𝑣𝑎𝑟 
𝜀

𝑥
= 𝜎2 ---> constant variance. 

• So, this means that the variance in the 𝑦 variable is constant across 

the range of the 𝑥 variable. 



OLS assumptions – 9 Homoscedasticity 

The variability of the 

unobserved 

influences (error) 

does not dependent 

on   the value of the 

explanatory 

variable. 



OLS assumptions – 10 Heteroscedasticity 

The variance of 

the unobserved 

determinants of y 

increases with 

the change in x. 



OLS assumptions - 11 



OLS assumptions - 12 

This is R generated plot for the ozone/temp example from SLR lecture 

2. Simply type in the R console: 

 plot(m1) for a model named m1 in R 



Variable types in regression 

• We first discussed SLR and did an example with 2 continuous 

variables 𝑥 and 𝑦. 

• What happens if your IV is not continuous? If your IV is categorical? 

• Binary variable (takes only 2 values). 

• 1 / 0. 

• Yes / No. 

• Male / Female. 

• Nominal categorical (2 or more categories). Typically with no numeric 

values. 

• The blood type of a person: A, B, AB or O. 

• The state that a person lives in. 

• So there is flexibility in the choices of the types of variables.  



Example – binary variable 

• Example: Is height associated with gender?  

• Two variable: 

• 𝑥 = IV with two levels (male, female) 

• 𝑦 = DV- continuous.(height). 

• This IV has no values.  

• Does our model change?  𝑦 = 𝑏0 + 𝑏1𝑥  NO 

• If so, then all of the 5 OLS assumptions still hold and we can use 

SLR. 

• Let’s plot our variables 

•     



Example – binary variable 

At what value does the line 

cross for males? And for 

females?  The average 

What does the slope now 

represents? The difference in 

average y moving from 

males to females (between 

genders). 

Note: before the slope 

represented a change of 1 

unit in x, now it represents 

the average from males to 

females. 



Slope interpretation of binary SLR 

• How does R handle categorical variables?    

When 𝑥 = 0 (males), the model 

becomes 𝑦 = 𝛽0, so the intercept is the 

average of the males.  

When 𝑥 = 1 (females), the model 

becomes 𝑦 = 𝛽0 + 𝛽1, so the sum of 

the parameters is the average of the 

females.  

So, my 𝛽1now is the difference 

between ave. of females – avg. of 

males = 𝛽0 + 𝛽1 − 𝛽0 = 𝜷𝟏 

If betas were similar, there is no 

difference in height between male and 

female. 



R - SLR - binary variable 

• How does R handle categorical variables?    

𝛽0 = 1750.561 is the y-intercept at 𝑚𝑎𝑙𝑒 = 0  

𝛽1 = −150.952 is the coefficient for 𝑓𝑒𝑚𝑎𝑙𝑒 = 1 

𝛽1 is representing the difference of females relative to males (the difference). 

As we are moving from males to females, the average is decreasing by -150.952 

Male=0 is the 

reference case 

We can generally 

conclude that female 

are less in height 

compared to males. 

But more preciously: 



R - SLR - binary variable 

• How does R handle categorical variables?    

Order matters! 

𝛽1= always non-

reference level minus 

reference level. 

There is a significate 

difference between 

females and males. 

There is a significate difference in height between those who ate females and those who are 

males (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2𝑒−16)   



Hypothesis test with 𝛽1 

to conduct a t-test on slope 𝛽1: 

Specify hypothesis: 

• 𝐻0: 𝛽1 = 0 𝑣𝑠. 𝐻1:  𝛽1 ≠ 0 𝑎𝑡 𝛼 = 0.05 (similar to previous class). 

• If we can reject our null, this mean our slope is different than 0 and 

that there is a difference between both categories of gender. 

• Luckily we have software that can do all that for us. 

• Conclusion: We can conclude that there is a significate linear 

association between gender and height 

• Interpretation (proper): There is a significant difference in the average 

height for females compared to males. Females were 150.952 mm 

shorter in height than males.  



What happens when we have more than 

two categories to a variable? 
• R will split the variable into smaller binary variables. 

• For example, if a categorical variable 𝑋 has 3 levels, some software 
will create 3 binary variables 𝑥1, 𝑥2, 𝑥3  representing the categories of 
𝑋. 

• This technique of mimicking 𝑋represents level 1 vs level 3 and level 2 
vs level 3. Variables created with this procedure are called “Dummy 
Variables”. 

• Note that both levels 1, 2 are being compared to level 3, thus level 3 
is our reference level.    

• Other types of software are smart enough to recognize the categorical 
levels of a variable. 

• And other times, you have to code the variable so that the software 
can understand the 3 levels.  


